IECRÉ Renewable Energy System Certification Introduction

Wolfram Zeitz Executive Secretary IECRE & IECEE April 2022

IEC System for Certification to Standards Relating to Equipment for use in Renewable Energy Applications

Agenda

- IEC and IECRE in brief
- Renewable energy (RE) installations
- Reasons for the need of international standards and conformity assessment (CA)
- Definition of unique aspects of RE installations
- RE supply chain, where CA is used and why
- Why RE standards are needed at each level
- Why is RE certification unique
- IEC does NOT certify, what it DOES do
- Describe stakeholders & value proposition

IEC family

Global reach: 174 countries (88 members – 86 affiliates)

IEC

IEC is the abbreviation for International Electrotechnical Commission

- IEC is represented by 174 member countries representing
 - 99% of world population
 - 99% of electric power generation
- Scope
 - Standardization of devices and systems that produce electricity and contain electronics
 - Renewable energy
 - Interoperability
 - Safety
 - Performance
 - EMC (Electromagnetic Compatibility)
 - Environment
- Knowledge platform
 - 20 000 experts
 - >200 technical committees
 - >10 000 international standards
 - Testing and certification
- Many national standards originate from IEC standards

IEC management structure

IECRE

IECRE

IECRE is the abbreviation for IEC System for Certification to Standards Relating to Equipment for Use in Renewable Energy Applications (IECRE System)

- IECRE operates a single, global certification system addressing 3 sectors
 - Solar photovoltaic (PV) power
 - Wind power
 - Marine energy
- Being part of IEC, IECRE benefits from global brand recognition
 - international organizations (e. g. WTO, UN)
 - local/national authorities
 - industry
 - banks and insurance companies
 - etc.
- Processes and rules are open, transparent, and clear
- All participants share a consistent approach and recognition (certification bodies, inspection bodies, test bodies)
- Uniform implementation, clear understanding, and delivery of information
- Uniform implementation and clear understanding of the certification processes (reports, statements, certificates)

IECRE structure

Conformity Assessment Board (CAB)

Management of conformity assessment policies, activities and systems (IECEE, IECEx, IECQ, IECRE)

IECRE common elements

IECRE participation by country

As per IEC CA 01, Basic Rules, countries listed as Voting Members are identified with the "star" icon. Countries listed as Non-voting Members are identified with the "eye" icon.

Member Bodies (MBs)			Table search:				Exc	el	PDF	Print
Country	Member Body Name	\$	Voting Member	\$	Marine Energy	\$	Solar Energy	\$	Wind Energy	¢
Australia	Joint Accreditation System of Australia and New Zealand (JAS-ANZ)		X				\checkmark			
Belgium	CEB-BEC		*		\checkmark					
China	Certification and Accreditation Administration of the People's Republic of China (CNCA)		*				\checkmark		\checkmark	
Denmark	IEC National Committee of Denmark		X						\checkmark	
France	LCIE by Delegation from the IEC NATIONAL COMMITTEE of FRANCE		*		\checkmark				\checkmark	
Germany	IEC National Committee of Germany		×				\checkmark		\checkmark	
💿 India	Bureau of Indian Standards		*				\checkmark		\checkmark	
🔴 Japan	IEC National Committee of Japan		*		\checkmark		\checkmark		\checkmark	
Korea, Republic of	IEC National Committee of Korea, Republic of		*				\checkmark		\checkmark	
Netherlands	IEC National Committee of Netherlands		*		\checkmark				\checkmark	
Saudi Arabia	SASO (Saudi Standards, Metrology and Quality Org.)		*				\checkmark		\checkmark	
Spain	IEC National Committee of Spain		*				\checkmark		\checkmark	
United Arab Emirates	Ministry of Industry and Advanced Technology (MoIAT)		*				\checkmark			
United Kingdom	UK Committee for IECRE		*		\checkmark				\checkmark	
United States of America	USNC/IECRE		*		4		4		\checkmark	

Showing 1 to 15 of 15 entries

Previous 1

Next

9 Please go to <u>https://www.iecre.org/dyn/www/f?p=110:7::::P7_ORG_TYPE:REMB</u> for current membership participation information

Why IEC Standards and conformity assessment?

- ~200 bn US\$ international renewable energy market just for new installations (wind and solar each ~100 bn US\$, marine still nascent)
- Harmonized international consensus standards throughout RE industry
- Harmonized conformity assessment
- Harmonized interpretation
- Reduced risk
- Peer assessment
- Transparency
- Mutual acceptance
- Broad stakeholder engagement
- Unique RE international CA system

Importance of IECRE Conformity Assessment

IECRE conformity assessment system replaces IEC 61400 – 22 standard Reason: It's not a standard but rather a conformity assessment system

A RE power plant is just like any power plant, a complex system...

- RE systems are assembled from many large and small components, which all have to work harmoniously to produce reliable energy
- Depending on technology: blades, gears, towers, panels, cables, controllers, etc.
- Components assessed by
 - design analysis assessment
 - model validation
- System assessed by
 - design analysis assessment
 - component validation
- Requires field assembly, commissioning and O&M
- Interconnection compliance
- Every turnkey system is a unique field installation

...however, unlike conventional power plants, RE power plants face unique exposures

- Components and systems cannot be tested to design specifications (specific to wind applications)
- Power driving components are immediately exposed to the environment
- The "energy sources" are not continuously available 24/7
- The variables of the power sources vary constantly, and with this, loads and degradation:
 - wind turbine: Wind loads (incl. gusts), icing, wildlife etc.
 - PV power plant: Wind loads, snow loads, hail, temperature, sand abrasion, irradiation, wildlife etc.
 - marine power plants: Water current, wildlife etc.
- Min. 20 years design life may result in challenges given the direct environmental exposure to power generation devices
- Each installation is unique as it must fit the particular geology and geography of its location, and in addition, the design criteria need to meet demand (one size does not fit all!)
- Assessment must depend on design analysis and model validation through testing
- Turn key system reliability and performance depend on upstream component certifications
 AND installation / maintenance quality

RE supply chain, where CA is used and why

Raw materials Compone	nts Transport Ir	nstallation Operation & maintenance
 Wind: Blades Bearings Gearboxes Towers Towers Panels Actuators Controllers Converters Foundations Cables Grid connection Etc. 	 Photovoltaic: Panels Inverters Connecting cables Trackers (optional) Cables Cable conduits Controllers Inverters Foundations Grid connection Cleaning machines Etc. 	 Marine: Blades Bearings Gearboxes Towers Panels Actuators Actuators Controllers Converters Foundations Cables Grid connection Etc.

CA not applicable

Why are RE standards and conformity assessments needed at each level?

- Reliability depends on integrated system design of many components
- Each individual component contributes to the successful interaction of the system:
 - Wind: blades, bearings, gearboxes, generators, towers, foundations, controllers, etc.)
 - PV: panels, actuators, support structures, inverters, cables
 - Marine: wave/current/tidal energy converters

How does the IECRE system work ?

- IECRE itself does NOT certify, however, IECRE assures through a systematic approach that system participants who issue certificates are qualified
- Qualified registered participants are competent to assess RE equipment and projects
 - RECBs (RE Certification Bodies)
 - REIBs (RE Inspection Bodies)
 - RETLs (RE Test Laboratories)
- Competence validation through regular, revolving peer assessment
- Proper IEC and other international standards are referenced insuring appropriate interpretation of standards
- Transparency
- Influence for all stakeholders
 - All stakeholders have a voice (RECBs, REIBs, RETLs, OEMs, End Users)
 - All national member bodies have a vote
 - All participating member bodies recognize & accept IECRE certificates

Peer assessment is crucial for the IECRE system

* Peer assessment committee

Who are the IECRE stakeholders?

- OEMs, EPCs
- RECBs, RETLs, REIBs Place • Independent Project owner **Grid Operator** Region Engineers (IEs) End Users Regulators **Operation & Financing Bank** Maintenance Developers **OEM Manufacturer** Operators Permitting authorities **Owners** Re-insurer FPC Banks Insurers **RECBs/REIBs/RETLs** Independent Grid operators Insurer engineers Regulators Specialized product tester / • Etc. laboratory Etc... Time Risk management Courtesy of EXXERGY

IECRE

Co

What is the motivation for different stakeholders to make use of the IECRE system?

- OEMs, EPCs
- RECBs, REIBs, RETLs
- Independent Engineers
- End Users
 - Developers
 - Operators
 - Owners
 - Banks
 - Insurers
 - Grid operators
 - Regulators

Level playing field, mutual acceptance Expanded market, increased value, proven proficiency Market, value, proficiency

Consistency, quality, resale value Quality, reliability

Risk management, performance, resale value

Grid compliance, reliability Safety, code compliance

Thank you! secretariat@iecre.org www.iecre.org

Wolfram Zeitz Executive Secretary IECRE & IECEE April 2022

IEC System for Certification to Standards Relating to Equipment for use in Renewable Energy Applications

IECRE

Wolfram Zeitz IECEE and IECRE Executive Secretary & COO T +41 22 919 0329 wze@iec.ch

International Electrotechnical Commission

IECRE Secretariat 3 rue de Varembé, PO Box 131 CH-1211 Geneva 20, Switzerland T +41 22 919 0211 E secretariat@iecre.org

Internet

www.iecre.org www.iec.ch

